

 GELF Logger

 v0.10.1

 Table of contents

 	GelfLogger

 	
 Modules

 	Logger.Backends.Gelf

 GelfLogger [image: Build Status]

A logger backend that will generate Graylog Extended Log Format messages. The
current version only supports UDP messages.
Configuration
In the config.exs, add gelf_logger as a backend like this:
config :logger,
 backends: [:console, {Logger.Backends.Gelf, :gelf_logger}]
In addition, you'll need to pass in some configuration items to the backend
itself:
config :logger, :gelf_logger,
 host: "127.0.0.1",
 port: 12201,
 format: "$message",
 application: "myapp",
 compression: :gzip, # Defaults to :gzip, also accepts :zlib or :raw
 metadata: [:request_id, :function, :module, :file, :line],
 hostname: "hostname-override",
 format: {Module, :function} # or format: "[$level] $message"
 tags: [
 list: "of",
 extra: "tags"
]
In addition to the backend configuration, you might want to check the
Logger configuration for other
options that might be important for your particular environment. In
particular, modifying the :utc_log setting might be necessary
depending on your server configuration.
This backend supports metadata: :all.
Usage
Just use Logger as normal.
Improvements
	[x] Tests
	[] TCP Support
	[x] Options for compression (none, zlib)
	[x] Send timestamp instead of relying on the Graylog server to set it
	[x] Find a better way of pulling the hostname

And probably many more. This is only out here because it might be useful to
someone in its current state. Pull requests are always welcome.
Notes
Credit where credit is due, this would not exist without
protofy/erl_graylog_sender.
Looking for maintainers if anyone would like to help!

Logger.Backends.Gelf

GELF Logger Backend
GelfLogger [image: Build Status]
A logger backend that will generate Graylog Extended Log Format messages. The
current version only supports UDP messages.
Configuration
Elixir v1.19 and later
In the config.exs, configure the Gelf Logger:
config :logger, Logger.Backends.Gelf,
 host: "127.0.0.1",
 port: 12201,
 format: "$message",
 application: "myapp",
 compression: :gzip, # Defaults to :gzip, also accepts :zlib or :raw
 metadata: [:request_id, :function, :module, :file, :line],
 hostname: "hostname-override",
 json_encoder: Poison,
 tags: [
 list: "of",
 extra: "tags"
]
In application.ex, add Gelf logger backend:
 @impl true
 def start(_type, _args) do
 LoggerBackends.add(Logger.Backends.Gelf)

 #...
 end
Pre-Elixir v1.19
In the config.exs, add gelf_logger as a backend like this:
config :logger,
 backends: [:console, {Logger.Backends.Gelf, :gelf_logger}]
In addition, you'll need to pass in some configuration items to the backend
itself:
config :logger, :gelf_logger,
 host: "127.0.0.1",
 port: 12201,
 format: "$message",
 application: "myapp",
 compression: :gzip, # Defaults to :gzip, also accepts :zlib or :raw
 metadata: [:request_id, :function, :module, :file, :line],
 hostname: "hostname-override",
 json_encoder: Poison,
 tags: [
 list: "of",
 extra: "tags"
]
In addition, if you want to use your custom metadata formatter as a "callback",
you'll need to add below configuration entry:
 format: {Module, :function}
Please bear in mind that your formating function MUST return a tuple in following
format: {level, message, timestamp, metadata}
In addition to the backend configuration, you might want to check the
Logger configuration for other
options that might be important for your particular environment. In
particular, modifying the :utc_log setting might be necessary
depending on your server configuration.
This backend supports metadata: :all.
Note on the JSON encoder:
Currently, the logger defaults to Poison but it can be switched out for any
module that has an encode!/1 function.
Usage
Just use Logger as normal.
Improvements
	[x] Tests
	[] TCP Support
	[x] Options for compression (none, zlib)
	[x] Send timestamp instead of relying on the Graylog server to set it
	[x] Find a better way of pulling the hostname

And probably many more. This is only out here because it might be useful to
someone in its current state. Pull requests are always welcome.
Notes
Credit where credit is due, this would not exist without
protofy/erl_graylog_sender.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

